An improved approach to attribute reduction with covering rough sets

نویسندگان

  • Changzhong Wang
  • Baiqing Sun
  • Qinghua Hu
چکیده

Attribute reduction is viewed as an important preprocessing step for pattern recognition and data mining. Most of researches are focused on attribute reduction by using rough sets. Recently, Tsang et al. discussed attribute reduction with covering rough sets in the paper [E. C.C. Tsang, D. Chen, Daniel S. Yeung, Approximations and reducts with covering generalized rough sets, Computers and Mathematics with Applications 56 (2008) 279–289], where an approach based on discernibility matrix was presented to compute all attribute reducts. In this paper, we provide an improved approach by constructing simpler discernibility matrix with covering rough sets, and then proceed to improve some characterizations of attribute reduction provided by Tsang et al. It is proved that the improved discernible matrix is equivalent to the old one, but the computational complexity of discernible matrix is greatly reduced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel method for attribute reduction of covering decision systems

Attribute reduction has become an important step in pattern recognition and machine learning tasks. Covering rough sets, as a generalization of classical rough sets, have attracted wide attention in both theory and application. This paper provides a novel method for attribute reduction based on covering rough sets. We review the concepts of consistent and inconsistent covering decision systems ...

متن کامل

A New Approach for Knowledge Based Systems Reduction using Rough Sets Theory (RESEARCH NOTE)

Problem of knowledge analysis for decision support system is the most difficult task of information systems. This paper presents a new approach based on notions of mathematical theory of Rough Sets to solve this problem. Using these concepts a systematic approach has been developed to reduce the size of decision database and extract reduced rules set from vague and uncertain data. The method ha...

متن کامل

Multigranulation single valued neutrosophic covering-based rough sets and their applications to multi-criteria group decision making

In this paper, three types of (philosophical, optimistic and pessimistic) multigranulation single valued neutrosophic (SVN) covering-based rough set models are presented, and these three models are applied to the problem of multi-criteria group decision making (MCGDM).Firstly, a type of SVN covering-based rough set model is proposed.Based on this rough set model, three types of mult...

متن کامل

Covering Numbers in Covering-Based Rough Sets

Rough set theory provides a systematic way for rule extraction, attribute reduction and knowledge classification in information systems. Some measurements are important in rough sets. For example, information entropy, knowledge dependency are useful in attribute reduction algorithms. This paper proposes the concepts of the lower and upper covering numbers to establish measurements in covering-b...

متن کامل

Decision Table Reduction in KDD: Fuzzy Rough Based Approach

Decision table reduction in KDD refers to the problem of selecting those input feature values that are most predictive of a given outcome by reducing a decision table like database from both vertical and horizontal directions. Fuzzy rough sets has been proven to be a useful tool of attribute reduction (i.e. reduce decision table from vertical direction). However, relatively less researches on d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1205.2541  شماره 

صفحات  -

تاریخ انتشار 2012